#Articles = 23, #Citations ~ 550, H-index = 10, i10-index = 11. You can find the articles on my Google Scholar profile
Journal articles
- Rautela, M., Williams, A., Scheinker, A. (2025). Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal. Physical Review E, 111(2), 025307. (paper/arxiv/code/data/video)
- Rautela, M., Williams, A., Scheinker, A., 2024. A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators. Scientific Reports (Nature), 14(1), p.18157. (paper/arxiv/code/data/video)
- Monaco, E., Rautela, M., Gopalakrishnan, S. and Ricci, F., 2024. Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and results. Progress in Aerospace Sciences, 146, p.100994. (paper/arxiv/code/data/video)
- Rautela, M., Mirfarah, M., Silva, C.E., Dyke, S., Maghareh, A. and Gopalakrishnan, S., 2023. Real-time rapid leakage estimation for deep space habitats using exponentially-weighted adaptively-refined search. Acta Astronautica, 203, pp.385-391. (paper/arxiv/code/data/video)
- Rautela, M., Senthilnath, J., Huber, A. and Gopalakrishnan, S., 2022. Towards deep generation of guided wave representations for composite materials. IEEE Transactions on Artificial Intelligence, vol. 5, no. 3, pp. 1102-1109. (paper/arxiv/code/data/video)
- Rautela, M., Huber, A., Senthilnath, J. and Gopalakrishnan, S., 2022. Inverse characterization of composites using guided waves and convolutional neural networks with dual-branch feature fusion. Mechanics of Advanced Materials and Structures, 29(27), pp.6595-6611. (paper/arxiv/code/data/video)
- Rautela, M., Senthilnath, J., Monaco, E. and Gopalakrishnan, S., 2022. Delamination prediction in composite panels using unsupervised-feature learning methods with wavelet-enhanced guided wave representations. Composite Structures, 291, p.115579. (paper/arxiv/code/data/video)
- Rautela, M., Senthilnath, J., Moll, J. and Gopalakrishnan, S., 2021. Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning. Ultrasonics, 115, p.106451. (paper/arxiv/code/data/video)
- Rautela, M. and Gopalakrishnan, S., 2021. Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks. Expert Systems with Applications, 167, p.114189. (paper/arxiv/code/data/video)
- Rautela, M. and Bijudas, C.R., 2019. Electromechanical admittance based integrated health monitoring of adhesive bonded beams using surface bonded piezoelectric transducers. International Journal of Adhesion and Adhesives, 94, pp.84-98. (paper/arxiv/code/data/video)
Conference articles
- Rautela, M., Williams, A. and Scheinker, A., 2024. CBOL-Tuner: Classifier-pruned Bayesian optimization to explore temporally structured latent spaces for particle accelerator tuning. Under Review arxiv.
- Rautela, M., Williams, A., Scheinker, A.. Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal, In 32nd Linear Accelerator Conference (LINAC), August 2024. (paper/arxiv/data/code/video)
- Rautela, M., Williams, A., Scheinker, A.. Towards latent space evolution of spatiotemporal dynamics of six-dimensional phase space of charged particle beams, In 15th International Conference on Particle Accelerators (IPAC), May 2024. (paper/arxiv/data/code/video)
- Rautela, M., Williams, A., Scheinker, A.. Accelerator system parameter estimation using variational autoencoded latent regression, In 15th International Conference on Particle Accelerators (IPAC), May 2024. (paper/arxiv/data/code/video.
- Rautela, M., Senthilnath, J., and Gopalakrishnan, S.. Bayesian optimized physics-informed neural network for estimating wave propagation velocities (Accepted/In-press), Dec. 2023. (paper/arxiv/data/code/video)
- Rautela, M., Maghareh, A., Dyke, S., and Gopalakrishnan, S.. Deep generative models for unsupervised delamination detection using guided waves. In 8th World Conference on Structural Control and Monitoring., June 2022. (paper/arxiv/data/code/video)
- Gopalakrishnan, K., Rautela, M. and Deng, Y., 2020, July. Deep learning based identification of elastic properties using ultrasonic guided waves. In European workshop on structural health monitoring (pp. 77-90). Cham: Springer International Publishing. (paper/arxiv/data/code/video)
- Rautela, M., Gopalakrishnan, S., Gopalakrishnan, K. and Deng, Y., 2020, June. Ultrasonic guided waves based identification of elastic properties using 1d-convolutional neural networks. In 2020 IEEE International Conference on Prognostics and Health Management (ICPHM) (pp. 1-7). IEEE. (paper/arxiv/data/code/video)
- Rautela, M., Raut M., and Gopalakrishnan, S., 2022, March. Simulation of guided waves for structural health monitoring using physics-informed neural networks, In International Workshop of Structural Health Monitoring (IWSHM). (paper/arxiv/data/code/video)
- Rautela, M., Monaco, E. and Gopalakrishnan, S., 2021, March. Delamination detection in aerospace composite panels using convolutional autoencoders. In Health Monitoring of Structural and Biological Systems XV (Vol. 11593, pp. 292-301). SPIE. (paper/arxiv/data/code/video)\
- Rautela, M., Jayavelu, S., Moll, J. and Gopalakrishnan, S., 2021, March. Temperature compensation for guided waves using convolutional denoising autoencoders. In Health Monitoring of Structural and Biological Systems XV (Vol. 11593, pp. 316-326). SPIE. (paper/arxiv/data/code/video)
- Monaco, E., Boffa, N.D., Ricci, F., Rautela, M., Passato, D. and Cinque, M., 2021, March. Simulation of waves propagation into composites thin shells by FEM methodologies for training of deep neural networks aimed at damage reconstruction. In Health Monitoring of Structural and Biological Systems XV (Vol. 11593, pp. 302-315). SPIE. (paper/arxiv/data/code/video)
- Rautela, M. and Gopalakrishnan, S., 2019, November. Deep learning frameworks for wave propagation-based damage detection in 1d-waveguides. In Proceedings of 11th International Symposium on NDT in Aerospace (Vol. 2, pp. 1-11). (paper/arxiv/data/code/video)